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Abstract-The problems of steady film condensation outside a wedge or a cone embedded in a porous 
medium filled with a dry saturated vapor are investigated. As in classical film condensation problems, it is 
assumed that (a) the condensate and the vapor are separated by a distinct boundary with no two-phase zone 
in between, and (b) the condensate has constant properties. Within the boundary layer approximations, 
similarity solutions have been obtained for the temperature and flow fields in the condensate. Moreover, a 
closed form solution has been obtained for the Nusselt number which depends on the square root of the 
Rayleigh number and the dimensionless film thickness. The latter is found to be a function of a dimensionless 
parameter related to the degree of wall subcooling. Asymptotic cases for small and large wall subcoohngs are 
also considered. As in the classical film condensation problems, it is found that the ‘Nusselt’-type 
approximation (for small wall subcooling) overestimates the film thickness while underestimates the Nusselt 
number. An approximate expression for Nusselt number in terms of the degree of wall subcooling explicitly is 

also obtained. 

NOMENCLATURE 

specific heat of the fluid; 
dimensionless stream function; 
local heat transfer coefficient ; 
latent heat of vaporization; 
permeability of the porous medium; 
thermal conductivity of the saturated porous 
medium ; 
mass flux across the interface; 
n = 0 for wedge and n = 1 for cone; 
local Nusselt number; 
pressure; 
local heat transfer rate; 
r =xsin4; 
local Rayleigh number ; 
dimensionless degree of wall subcooling; 
dimensionless degree of wall superheating; 
temperature; 
Darcy’s velocity in x-direction ; 
Darcy’s velocity in y-direction ; 
the width of the wedge; 
coordinate along the inclined surface; 
coordinate perpendicular to the inclined 
surface. 

Greek symbols 

4 equivalent thermal diffusivity ; 
6, boundary layer thickness; 

rl, similarity variable; 

6, dimensionless temperature; 

I4 viscosity of the fluid ; 

P7 density of the fluid; 

9, inclination angle; 

$9 stream function ; 
r, total mass rate of condensate. 

Subscripts 

s, saturated condition ; 

t 
vapor phase; 
liquid phase ; 

a, condition at infinity; 

w, condition at the wall. 

INTRODUCTION 

THE PROBLEM!~ of two-phase flow in a porous medium 
involving phase change have important applications 
in geothermal energy utilization [ 11, thermal enhance- 
ment of oil recovery [2] and in situ combustion 
processes, to name but three. When two-phase flow 
exists in a porous medium, it is known that Darcy’s law 
is also applicable to both the liquid and the vapor 
phases provided that the concept of relative per- 
meability be introduced. This is to account for the fact 
that the pore spaces are filled partly with vapor and 
partly with steam. However, because of the ma- 
thematical complexity of the governing equations, 
analytical solutions for two-phase flow in a porous 
medium involving phase change can be obtained only 
after simplifying assumptions have been made. 

In this paper, the problems of steady film conden- 
sation along a wedge and a cone in a porous medium 
will be considered. The problem is formulated based 
on the standard approximations used in the classical 
film condensation problems [3-51. It is assumed that 
(a) the condensate and the vapor are separated by a 
distinct boundary with no two-phase zone between; 
(b) the condensate has constant properties; and (c) 
condensate film is thin: such that boundary layer 
approximations are applicable. The first assumption 
was also employed by Parmentier [6] to study the 
problem of film boiling in a porous medium. Note that 
this approximation is akin to the so-called ‘the abrupt 
interface approximation’ in groundwater hydrology 
[7]. It is important to note that because of the first 
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approximation, the complexity of the relative per- 
meability no longer exists in the problem, and that 
single-phase equations can be applied separately to the 
vapor and the condensate. As a result the mathemati- 
cal problem of film condensation is considerably 
simplified, and similarity solutions for film conden- 
sation along a wedge and a cone are possible. 
Consequently, closed-form expressions of the Nusselt 
numbers are obtained in terms of the Rayleigh number 
and the dimensionless boundary layer thickness of the 
condensate. The latter is found to be a function of a 
dimensionless parameter related to the degree of wall. 
Asymptotic cases of a small and large wall subcooling 
are also considered. As in the classical film conden- 
sation problems, it is found that the ‘Nusselt’-type 
approximation (for small wall subcooling) overes- 
timates the film thickness while underestimates the 
Nusselt number. 

AlVALYSlS 

Consider a two-dimensional wedge or a cone (hav- 
ing an included angle 24) with wall temperature T, is 
embedded in a porous medium filled with a dry 
saturated vapor at a saturated temperature T, (cor- 
responding to its pressure) as shown in Figs. l(a) and 
l(b). If the wall temperature (T,,,) is less than the 
saturated temperature (T,), a film of condensate will 
form adjacent to the surface and flows downward 
because of gravity. To investigate the problem of film 
condensation about an inclined surface in a porous 
medium, the following assumptions will be made : 

(1) 

(2) 

(3) 

(4) 

The condensateand the-dry saturated vapor are 
separated by a distinct interface at y = dL. 
The condensate film is thin such that boundary 
layer approximations are applicable. 
The properties of the porous medium, the dry 
saturated vapor, and the condensate are 
constant. 
The inclination angle 4 (with respect to the 
vertical) is small such that the component of the 

FIG. 1. Coordinate systems for film condensation along a wedge (n = 0) and a cone (n = 1). 

(5) 
(6) 

gravitational force normal to the surface is 
negligible. 
The saturated temperature (T,) is a constant. 
Darcy’s law is applicable to both the dry vapor 
and liquid phases in the porous medium. 

Assumptions (l)-(S) are the usual approximations 
used in the classical film condensation problems. 
Under the aforementioned assumptions, the governing 
equations for the condensate at y < a,2 are 

UL = - fL_(P,: - FL.gcos4 (2) 

aT, aTL a2TL 
UL~ + UL~~I = aLay (3) 

where the subscripts L and v denote the quantities 
associated with the liquid and vapor phases ; u and v 
are the Darcy’s velocities in the x- and y-directions ; p 
and p are the density and viscosity of the condensate; 
K and a are the permeability and the equivalent 
thermal diffusivity of the porous medium; p and T are 
the pressure and temperature. In equation (1) r = 
x sin 4 and n = 0 for a wedge and n = 1 for a cone. 
Equation (2) shows that the condensate is flowing 
downward along the impermeable surface with a 
constant velocity, since both pL and pv are assumed to 
be constant. 

The boundary conditions at the wall are 

f = 0, vL = 0 and T, = T,. Pa, b) 

At the liquid-vapor interface at y = fiL, the continuity 
of temperature mass flux and energy flux are 

y = 6,, TL = T, (5) 

ni = PL(UL~ - vL!_,, (6) 

nih 

(b) n- 1 



where ti is the mass flux of condensate across the subcooling; and 

interface, h,, is the latent heat at TX, and km,L is the 
thermal conductivity of the porous medium saturated 

rlLa = @I~)+~ = &,,L)&/x (20) 

with liquid. Substituting equation (6) into (7) gives the which is the dimensionless liquid film thickness. 
following interface condition Equation (15) with boundary condition (17a) can be 

integrated to give 

fL=vb (21) 

We now introduce the stream function of the conden- Substituting equation (21) into (16) and (19) yields 

sate such that f?; + (n + ))rJ,& = 0 (22) 

1 wL 1 wL 
uL = - - and uL = - 7 _ 

and 
r” ay ax 

(9) 

Sew!,,) = -(n + thL& (23) 
so that the continuity equation is satisfied automati- 
cally. In terms of the stream function, equations (2) and Equation (22) with boundary conditions (17b) and (18) 

(3) with boundary conditions (4a) and (8) become has the following exact solution 

1 wL K 
= I, (PL - P”kl cm 4 (10) 

erf[(2n + 1)“2qL/2] -- 
r” ay eL(VL) = ’ - erf[(2n + 1)1’2t]Ld/2] (24a) 

1 a*, aTL a+L aTL -[_ __~ -IcaL a2TL 
(11) 

and consequently 

F ay ax ax ay ay2 ./(2n + 1) 
el,(ff,) = - -- 

and 
Jnexp[(2n + l&4] erfi(an + 1)"2tl~d21 

Wb) 
y=o, dl(/L=O 

ax 
(12) where qLa is determined from 

h,,p, wL db 

-[ 

wL 1 
SC = J”[(2rl + 1)“2VLJ/2] 

- P ay dx - + ax ),=dr x exp[(2n + 1)&/4]erf[(2n + 1)1/2qLd2] (25) 

which is obtained by substituting equation (24b) into 
= (13) equation (23). For the special case of an isothermal 

Equations (10) and (11) with boundary conditions 
vertical flat plate (n = 1 and 4 = 0), equations (24a) 

(4b), (5) (12) and (13) can now be solved by similarity 
and (25) are similar to the solution obtained by 

transformations. To this end, we introduce the follow- 
Parmentier [6] for film boiling along a heated vertical 

ing similarity variables 
plate in a porous medium filled with a saturated vapor, 
provided that the roles of the vapor and the liquid layer 

tlL = ,&%dylx (144 be interchanged and SC be replaced by Sh (where Sh = 

IC/L = ~aLJ(Rax,dfLh) (14b) 
c,,,( T, - T,)/hJ. It is not surprising to note that film 
condensation and film boiling in a porous medium has 

TL- Ts 
much in common. 

eL(tlL) = T_T (1W We now consider the flow field in the vapor phase at 
w s y > Bti Since the vapor is at constant temperature T,, 

where Ra,,, = K@, - p,) g cos&/pLaL is the local the energy equation is automatically satisfied. With the 
Rayleigh number of the condensate. In terms of the aid of the continuity equation and the boundary layer 
similarity variables, equations (10) and (11) with approximations applied to the Darcy’s law, one 
boundary conditions (4b), (5), (12) and (13) are obtains 

f;.= 1 (15) u, = 0 and u, = f (x). (2% b) 
e,; + (n + $)f& = 0 (16) From the interface mass continuity equation 

subject to the boundary conditions at the wall 

fL(O) = 0, 8,(O) = 1 URb) 
.=,“(+J”)J_dl 

and the interface conditions 

~L(rlLa) = 0 (18) 

= PL(UL~ - UL),=,, (27) 

SCmlLcJ = -b + t)fL(tlLa) (19) 
and with the aid of equations (14b), one obtains 

W.tPL - G7cos 4 1 li2 where the primes in equations (15), (16) and (19) ni = (n + +)pL rlLa (284 
denote differentiation with respect to qL; SC = PLX 

c.,tT. - T_.llh.. is a measure of deeree of wall ‘LX * -,I IV or 
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FIG. 2. Dimensionless film thickness vs dimensionless degree of wall subcooling. 

r7-I = (n + t, 
PLWPL - P”hl cos d 6 

YL 
; (28b) 

where we have made use of equation (20). It follows 
from equations (29b), (28a) and (27) that 

“” = (n + 4)PL 

PCC 

x r KaL(PL - P”)gcosd 1/Z 
PLX 1 qLa (29) 

which shows that the vapor is moving toward the 
interface. The total mass rate of condensate along a 
wedge and a cone can be computed according to 

I-= 
s 

’ (Znr)“W’-“ti dx = W’-“(211 sin 4)” x x”ti dx 
0 s 

O (30) 

where W is the width of the wedge. Substituting 
equation (28a) into (30), performing the integration 
and making use of equation (20), one obtains 

r = PLK(PL - P”h cm 46, w’ -“WY 

PL 
. (31) 

Equation (31) could have been obtained directly from 
the mass consideration in the liquid phase, i.e. K’ = 
p&L WI-“(2~)” where uL is given by equation (2). 

NUMERICAL RESULTS AND DISCUSSION 

Equation (25) is plotted as a solid line in Fig. 2 where 
it is shown that the dimensionless thickness of the 
liquid film increases as SC is increased. With the aid of 
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0 0,4 0.8 1.2 1.6 2.0 2.4 

FIG. 3. Dimensionless temperature and velocity profiles in the condensate. 
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Fig. 2, the dimensionless temperature profiles of the 
condensate given by equation (24a) can now be plotted 
as a function of SC, as shown in Fig. 3. The dimension- 
less velocity in the direction along the impermeable 
surface is plotted as a horizontal line in the same plot. 
From Figs. 2 and 3 it can be deduced that the 
boundary layer thickness of a cone is smaller by a 
factor of l/,/3 than that of a wedge. 

The surface heat flux along the impermeable surface 
is 

y=o 

= kmd”w - T,),&%L) 
X 

c-~(0)] (32) 

where km,L is the thermal conductivity of the porous 
medium saturated with liquid. Substituting equation 
(24b) into (32) yields 

q = P + l)k,dTw - Ts),i(Rax,,) 
w xerf[(2n + l)“‘tlJ2] 

l”. 
Ic 

(33) 

The local Nusselt number is defined as 

Substituting equation (33) into (34a), one obtains 

Nu, 
&2n+ l)Ra,,,] = ,/nerf[(2n : 1)‘%&2] *(34b) 

Equation (34b) is an exact solution for Nusselt 
number in terms of the dimensionless boundary layer 
thickness, which is implicitly a function of SC through 
equation (25). It will be convenient to obtain an 
expression for Nusselt number in terms of the wall 
subcooling explicitly. To this end, we now consider 
equations (24), (34b) and (23) for the limiting cases of 
qLa+OandqLa+ ~3: 

(1) As qLa -) 0, equations (24) can be expanded for 
small qLa to give 

(j =l-rlr. L 
'lta 

g,= _’ 
VLa 

(35) 

and consequently 

2sc 

tlza = (2n + 1) 
(37) 

which is obtained by substituting equation (36) into 
(23). Equation (37) shows that SC -B 0 as qLa + 0. 
Substituting (37) into (35) gives 

eL(vL) -_ 1 _ bJ(2n + ‘) 
Jw) (38) 

which shows that the temperature of the condensate is 
a linear function of distance. Similarly, equation (34) 
can be expanded for small VLa to give 

N4W 
,/E@ + 1)Ra,,~l = ’ (39) 

where we have made use of equation (37). 
With the aid of equations (20) and (37), the film 

thickness for this limiting case is given by 

It should be noted that equations (38)-(40) are similar 
to the ‘Nusselt’-type of analysis in the classical film 
condensation problems [5], and can therefore be 
obtained from a simple control volume analysis by 
writing mass and energy balance with the aid of the 
Darcy’s law and the assumption of a linear tempera- 
ture profile inside the liquid film.* Equations (37) and 
(39) are plotted as dashed lines in Figs. 2 and 4. As in 
the classical film condensation problems, it is shown in 
these figures that the ‘Nusselt’-type approximation 
overestimates the boundary layer thickness while 
underestimates the Nusselt number. 

(2) As VLa -+ co, equation (24) and (34) can be 
expanded for large qLa to give 

eL = 1 - erf[(2n + l)“*q,/2] (41) 

J[(2n ,““1;R,, L] = o’5642’ (42) 

and 

SC = Jn[J(2;+ I)nra]exp[~t&]. (43) 

Equation (42) is plotted as horizontal dashed lines on 
the right-hand margin of Fig. 4. Equation (43) implies 
that SC + 00 as VLa + co. Note that for this limiting 
case the boundary layer approximations are accurate 
only if Ra,,L + cc so that 6/x c 1. 

Equations (39) and (42) suggest that it is convenient 
to plot 

Nu, J2sc 
J[(2n + l)Ra,,,] ” J2”, 

which can be obtained by first assuming a value of VLa 
and computing SC and Nu, from equations (25) and 
(34b), respectively. The results of the computations are 
plotted as a solid line in Fig. 5. The straight (dashed) 
lines in Fig. 5 are the asymptotic limits of small and 

* After this work had been completed, the author received 
an unpublished paper [8] from Dr H. Hardee who had also 
considered the problem of film condensation along a vertical 
cold plate in a porous medium and obtained an approximate 
solution similar to equations (39) and (40) (with n = 0 and 4 
= 0) independently by an integral method. 
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FIG. 4. Heat transfer results for film condensation. 

large wall subcoolings given by equations (39) and 
(42). An approximate expression for Nusselt number 
valid for the whole range of wall subcooling can now 
be constructed by the method described by Churchill 
and Usag [9]. To this end we write the Nusselt number 
in the following form 

which would reduce to the asymptotic expressions 

given by equations (39) and (42) for small and large 
wall subcoolings, respectively. The value of M in 
equation (44) is then determined by comparing the 
right-hand side of equation (44) to the right-hand side 
of equation (34b) at different values of Sc. It was found 
that if the value of m = 2 is chosen in equation (44), the 
right-hand side of equation (44) is closest to the exact 
solution given by the right-hand side of equation (34b). 
Equation (44) with M = 2 gives 

0 0.8 1.6 2.4 

JKC 

3.2 4.0 A.8 

FIG. 5. The quantity {Nu,/J[(Zn + l)Ra,,J} JZSC vs J~sc. 
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Nu42Sc 2sc II2 

J[(2n+ lpza,,,] = 1 + n [ 1 (45) 

which is an approximate expression for Nusselt num- 
ber that is accurate to the fourth significant figures (as 
compared to the exact solution) for the whole range 
of SC. 

CONCLUDING REMARKS 

The problems of film condensation along a wedge 
and a cone in a porous medium have been investigated 
based on the standard approximations used in the 
classical film condensation literature. Although the 
assumption of no mixed zone existing between the film 
and the saturation vapor is an accurate one for the 
classical film condensation problems, the validity of 
this assumption for film condensation in a porous 
medium must await experimental confirmation. As 
noted earlier, the governing equations and boundary 
conditions (under the assumptions stated) for the 
present problem are identical to those of film boiling in 
a porous medium filled with a saturated liquid, 
provided that the roles of the vapor and the liquid are 
being interchanged. Thus, Figs. 2-5 will also apply to 
the problems of film boiling about a wedge and a cone 
in a porous medium if the subscript L is replaced by u, 
and SC is replaced by Sh (a dimensionless parameter 

related to the degree of wall superheating). 
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CONDENSATION EN FILM LE LONG D’UNE SURFACE INCLINEE 
DANS UN MILIEU POREUX 

R&r&-On ttudie le probltme de la condensation en film le long d’un diedre ou dun cone dans un milieu 
poreux empli de vapeur saturte &he. Comme dans les problemes classiques de condensation en film, on 
suppose que (i) le condensat et la vapeur sont &pares ‘ar une frontiere sans zone diphasique, et (ii) le 
condensat a des propridtes constantes. Dans les approximations de la couche limite, on obtient des solutions 
de similitude pour la temperature et la vitesse dans le condensat. Une solution analytique est obtenue pour le 
nombre de Nusselt qui depend de la racine car& du nombre de Rayleigh et de l’epaisseur adimensionnelle du 
film. Cette demibe est une fonction du parambtre adimensionnel lie au sous-refroidissement de la paroi. Des 
cas asymptotiques pour des petits et des grands sous-refroidissements de la paroi sont aussi consider&. 
Comme dans les problemes classiques de condensation en film, on trouve que l’approximation de type 
“Nusselt” (pour un faible sous-refroidissament de la paroi) surestime l’tpaisseur du film et sous-estime le 
nombre de Nusselt. On obtient une expression approchee du nombre de Nusselt en fonction du degre de 

sous-refroidissement de la paroi. 

FILMKONDENSATION AN EINER GENEIGTEN OBERFLACHE IN EINEM PORt)SEN 
MEDIUM 

Zusammenfassung-In diesem Aufsatz werden die Probleme der stetigen Filmkondensation an Keilen und 
Kegeln in einem porosen Medium untersucht, das mit trocken gesattigtem Dampf gefiillt ist. Wie bei den 
klassischen Filmkondensationsproblemen wird angenommen, dal3 erstens Kondensat und Dampf durch 
eine definierte Grenzllache voneinander getrennt sind, ohne dal3 sich dazwischen eine Zweiphasenzone 
befindet und da13 zweitens das Kondensat konstante Stoffwerte be&t. Mit Hilfe der Grenzschicht- 
Naherungen erhllt man Ahnlichkeits-Losungen fur das Temperatur- und Geschwindigkeitsfeld im 
Kondensat. Dariiber hinaus gelang es, e.ine geachlossene L&sung fiir die Nusselt-Zahl zu entwickeln; diese 
hlngt vom Quadrat der Rayleigh-Zahl und von der dimensionslosen Filmdicke ab. Letztere ist eine 
Funktion eines dimensionslosen Parameters, der seinerseits mit dem Grad der Wandunterkiihlung 
verkniipft ist. Es werden such Grenzfiille fiir kleine und grol3e Wandunterkiihlungen betrachtet. Wie bei den 
klassischen Problemen der Filmkondensation ergibt sich, daB die ‘Nusselt-Approximation’ (fur kleine 
Wandunterkilhlungen) die Filmdicke zu groD und die Nusselt-Zahl zu klein liefert. Man erhiilt explizit 

einen Naherungsausdruck fiir die Nusselt-Zahl in Abhiingigkeit vom Grad der Wandunterkiihlung. 
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ILJIEHOYHAFI KOHflEHCA~MR HA HAKJIOHHOR llOBEPXHOCTM B nOPMCTOti 
CPEAE 

AHwoTauun- Hccnenyexn cTauwokiapHaR nneH0wax KoHneHcaum Ha noeepxkiocm xnma kine 

KOHyCa, nOMeIUeHHOr0 B nOp&iCTyW C&WAY, 3anOnHeHHylO CyXHM HaCbIWeHHblM IlapOM. AHanorkiqHO 

xnaccwiecxm 3anaqaM no nnesowoii KokineHcaum npennonaraemzn, wo (1) Memy KoHneHcaToM 

I( napOM UMeeTCIl YeTKall rpaHAUa W OTCyTCTByeT AByX+a3IiaX 30Ha I( 'IT0 (2) KOHAeHCaT XapaKTepW 

3yeTCfl nOCTORHHblMW CBOfiCTBaMH. B npH6JIHxeHWi lIOrpaHWIHOr0 CJlOIl nOJIyVeHb1 peZIIeH&iR AJIll 

TeMnepaTypHbIXHAHHaMti'ieCKHX nOJIeii B KOHAeHCaTe. Kpohie TOrO nOAy'ieH0 BbIpaXCeHlie AJIR 'IWCJla 

HycCeJIbTa, nponopwioHanbHor0 ~0p~m KeanpaTHoMy ~3 wcna Penen H 6e3pa3MepHofi Tonwme 
nnemm HaFiAeHO, r(To nocneAH5w 3aBmWT 0~ 6e3pa3MepHoro napahie-rpa. cnK3aHHoro co cTeneHbm 

HeAOrpeBa Ha CTeHKe. PaCCMOTpeHbI TaK)Ke aCWMnTOTW'ieCKHe CJIy'iaH 6onbmex H MaJlbIX HeAOrpeBOB 

HaCTeHKe.~HaSIOrI(~HOKAaCCU9eCKUM3aAa~aMnOn~eHO~HOiiKOHAeHCaUH~Ha~AeHO.~TO3aBHCliMOCTb 

Tsna (mps6nmemifl HyCCeJIbTa))(AJIfl He6OJIbUIHX HeAOrpeBOB Ha CTeHKe)AaeT JaBbIlUeHHbIe 3Ha'ieHBII 

TonuwHbI nneHw ~3a~w~eH~b1e3~a9eHm wcna HyCceAbTa. Ann nocnentiero nonysesa npH6JIHxeH- 

Hall 3aBHCHMOCTb.BbIpa~eHHaR 'lep3 CTeneHb HeAOrpeBa Ha CTeHKe. 


