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Abstract—The problems of steady film condensation outside a wedge or a cone embedded in a porous
medium filled with a dry saturated vapor are investigated. As in classical film condensation problems, it is
assumed that (a) the condensate and the vapor are separated by a distinct boundary with no two-phase zone
in between, and (b) the condensate has constant properties. Within the boundary layer approximations,
similarity solutions have been obtained for the temperature and flow fields in the condensate. Moreover, a
closed form solution has been obtained for the Nusselt number which depends on the square root of the
Rayleigh number and the dimensionless film thickness. The latter is found to be a function of a dimensionless
parameter related to the degree of wall subcooling. Asymptotic cases for small and large wall subcoolings are
also considered. As in the classical film condensation problems, it is found that the ‘Nusselt-type
approximation (for small wall subcooling) overestimates the film thickness while underestimates the Nusselt
number. An approximate expression for Nusselt number in terms of the degree of wall subcooling explicitly is
also obtained.
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Subscripts
NOMENCLATURE s, saturated condition;

C,  specific heat of the fluid; v, vapor phase;
f, dimensionless stream function ; L,  liquid phase;
h, local heat transfer coefficient; o,  condition at infinity;
hs., latent heat of vaporization; w, condition at the wall.
K, permeability of the porous medium;
k, thermal conductivity of the saturated porous INTRODUCTION

medium; THE PROBLEMS of two-phase flow in a porous medium
m, mass flux across the interface; involving phase change have important applications
n, n = 0 for wedge and n = 1 for cone; in geothermal energy utilization [ 1], thermal enhance-
Nu,, local Nusselt number; ment of oil recovery [2] and in situ combustion
D, pressure; processes, to name but three. When two-phase flow
q, local heat transfer rate; exists in a porous medium, it is known that Darcy’s law
r, r=xsing; is also applicable to both the liquid and the vapor
Ra,, local Rayleigh number; phases provided that the concept of relative per-
Sc,  dimensionless degree of wall subcooling; meability be introduced. This is to account for the fact
Sh,  dimensionless degree of wall superheating;  that the pore spaces are filled partly with vapor and
T, temperature; partly with steam. However, because of the ma-
u, Darcy’s velocity in x-direction; thematical complexity of the governing equations,
v, Darcy’s velocity in y-direction; analytical solutions for two-phase flow in a porous
w, the width of the wedge; medium involving phase change can be obtained only
X, coordinate along the inclined surface; after simplifying assumptions have been made.
Vs coordinate perpendicular to the inclined In this paper, the problems of steady film conden-

surface. sation along a wedge and a cone in a porous medium

Greek symbols

a, equivalent thermal diffusivity;
é, boundary layer thickness;

n, similarity variable;

0, dimensionless temperature;

U, viscosity of the fluid;
P, density of the fluid;

®, inclination angle;
v, stream function;
T, total mass rate of condensate.
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will be considered. The problem is formulated based
on the standard approximations used in the classical
film condensation problems [3-5]. It is assumed that
(a) the condensate and the vapor are separated by a
distinct boundary with no two-phase zone between;
(b) the condensate has constant properties; and (c)
condensate film is thin: such that boundary layer
approximations are applicable. The first assumption
was also employed by Parmentier [6] to study the
problem of film boiling in a porous medium. Note that
this approximation is akin to the so-called ‘the abrupt
interface approximation’ in groundwater hydrology
[7]. It is important to note that because of the first
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approximation, the complexity of the relative per-
meability no longer exists in the problem, and that
single-phase equations can be applied separately to the
vapor and the condensate. As a result the mathemati-
cal problem of film condensation is considerably
simplified, and similarity solutions for film conden-
sation along a wedge and a cone are possible.
Consequently, closed-form expressions of the Nusselt
numbers are obtained in terms of the Rayleigh number
and the dimensionless boundary layer thickness of the
condensate. The latter is found to be a function of a
dimensionless parameter related to the degree of wall.
Asymptotic cases of a small and large wall subcooling
are also considered. As in the classical film conden-
sation problems, it is found that the “Nusselt-type
approximation (for small wall subcooling) overes-
timates the film thickness while underestimates the
Nusselt number.

ANALYSIS

Consider a two-dimensional wedge or a cone (hav-
ing an included angle 2¢) with wall temperature T, is
embedded in a porous medium filled with a dry
saturated vapor at a saturated temperature T (cor-
responding to its pressure) as shown in Figs. 1(a) and
1(b). If the wall temperature (7,) is less than the
saturated temperature (T), a film of condensate will
form adjacent to the surface and flows downward
because of gravity. To investigate the problem of film
condensation about an inclined surface in a porous
medium, the following assumptions will be made:

(1) The condensate and the dry saturated vapor are
separated by a distinct interface at y =4,.

(2) The condensate film is thin such that boundary
layer approximations are applicable.

(3) The properties of the porous medium, the dry
saturated vapor, and the condensate are
constant.

(4) The inclination angle ¢ (with respect to the
vertical) is small such that the component of the
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gravitational force normal to the surface is
negligible.
(5) The saturated temperature (T,) is a constant.
(6) Darcy’s law is applicable to both the dry vapor
and liquid phases in the porous medium.
Assumptions (1)-(5) are the usual approximations
used in the classical film condensation problems.
Under the aforementioned assumptions, the governing
equations for the condensate at y < 4, are

e é
5(’"“1) + 5;(’"”1) =0 (L
K
u,=——I(p, — pr)gcos ¢ )
Hr
oT,, oT, o*T, 3)
— o=y
"L ox Yoy % oy?

where the subscripts L and v denote the quantities
associated with the liquid and vapor phases; u and v
are the Darcy’s velocities in the x- and y-directions; p
and p are the density and viscosity of the condensate;
K and o are the permeability and the equivalent
thermal diffusivity of the porous medium; p and T are
the pressure and temperature. In equation (1) r =
xsin ¢ and n = 0 for a wedge and n = 1 for a cone.
Equation (2) shows that the condensate is flowing
downward along the impermeable surface with a
constant velocity, since both p; and p, are assumed to
be constant.
The boundary conditions at the wall are

y=0, vy=0 and T,=T,. (4a,b)

At the liquid—-vapor interface at y = 4, the continuity
of temperature mass flux and energy flux are

y=96, T, =T, 5)
. dé
m=p, (uLE—L - u) (6)
X y=30,
_ oT
i, = ‘k'"-L<aTL> _ ()
y=2a,

{a)n=0

(b) n=1

F1G. 1. Coordinate systems for film condensation along a wedge (n = 0) and a cone (n = 1).



Film condensation along an inclined surface

where m is the mass flux of condensate across the
interface, hy, is the latent heat at T, and k,, ; is the
thermal conductivity of the porous medium saturated
with liquid. Substituting equation (6) into (7) gives the
following interface condition

h =L =k, (=L) . @
fgpL(uL dx UL)y:éL m.L( ay >y=5l_ ( )

We now introduce the stream function of the conden-
sate such that
1 oy,

! al//" and v, =—— — 9)

= ” ay r" oOx

so that the continuity equation is satisfied automati-
cally. In terms of the stream function, equations (2) and
(3) with boundary conditions (4a) and (8) become

16 K
Lo _ X o —pyacoses  (10)
"oy
1|0y, 6T,_ o, T, 0T,
>l A o . | T (11)
"} oy x o dy dy
and
oy
y=0 — (12)
o [0 401 20,
Loy dx o Ox [,
—kmL<aT'“> . (13)
ay y=0,

Equations (10) and (11) with boundary conditions
(4b), (5), (12) and (13) can now be solved by similarity
transformations. To this end, we introduce the follow-
ing similarity variables

L = /(Ra, )y/x (14a)

Yyp=r" aL\/ (Ra,, 1) fi(nL) (14b)
T, -

0.(n.) = T———'IT (14c)

where Ra, | = K(p, — p,) g cos dx/p o, is the local
Rayleigh number of the condensate. In terms of the
similarity variables, equations (10) and (11) with
boundary conditions (4b), (5), (12) and (13) are

fi=1 (15)
L+ m+3ff=0 (16)
subject to the boundary conditions at the wall
fu0)=0, 6.00)=1 (17a,b)
and the interface conditions
O.(n.s) =0 (18)
ScOilnLs) = —(n + Hfi(nes) (19)

where the primes in equations (15), (16) and (19)
denote differentiation with respect to n,; Sc =
cpi (T, T,)/hs, is a measure of degree of wall
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subcooling ; and
Nes = ("L)y:é,_ = \/(Rax,L)[SL/x

which is the dimensionless liquid film thickness.
Equation (15) with boundary condition (17a) can be
integrated to give

(20)

fu=mn. 1)
Substituting equation (21) into (16) and (19) yields
L+ (n+ Db =0 22)
and
Scby(nLs) = —(n + D (23)

Equation (22) with boundary conditions (17b)and (18)
has the following exact solution

erf{(2n + 1)y, /2]

Ouln) =1 - erf[(2n + 1)'71,,/2] (24)
afld COfse_quently J@n+ 1)
) = Juexp[(2n + Vni/a]erf[(2n + 1)1 n14/2]
(24b)

where 7., is determined from

SC = -\/7[[(2'1 + 1)1/2"L6/2]
xexp[(2n + Vnty/4]erf[(2n + 1)'*n,52] (25)

which is obtained by substituting equation (24b) into
equation (23). For the special case of an isothermal
vertical flat plate (n = 1 and ¢ = 0), equations (24a)
and (25) are similar to the solution obtained by
Parmentier [6] for film boiling along a heated vertical
plate in a porous medium filled with a saturated vapor,
provided that the roles of the vapor and the liquid layer
be interchanged and Sc be replaced by Sh(where Sh =
(T — Tg)/hy,). Itis not surprising to note that film
condensation and film boiling in a porous medium has
much in common.

We now consider the flow field in the vapor phase at
y > &,. Since the vapor is at constant temperature T,
the energy equation is automatically satisfied. With the
aid of the continuity equation and the boundary layer
approximations applied to the Darcy’s law, one

obtains
u,=0 and

v, =f(x).

From the interface mass continuity equation

. < dé, >
m=p,\U———b
dx y=d,

dé
=pL (uL—d»f - vL) @7)
X y=46,

and with the aid of equations (14b), one obtains

Koy (py — p)gcos¢ |'2
I: L(pL #pr )g ¢] NLs (28a)

(26a,b)

=@+

or



986

PING CHENG

36

32

28

24

20

(2n+1) 77L8
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FIG. 2. Dimensionless film thickness vs dimensionless degree of wall subcooling.

i = (n + b PeKbL = pgcos¢ 8

28b
He X (28b)

where we have made use of equation (20). It follows
from equations (29b), (28a) and (27) that
_ (n+3psL
’ Pu
y [KaL(pL — p,)gcos ¢
Hpx

1/2
] s (29)

which shows that the vapor is moving toward the
interface. The total mass rate of condensate along a
wedge and a cone can be computed according to

x
x"mdx
0

I= J Q@ur)'W' " dx = W=z sin @)
(]

where W is the width of the wedge. Substituting
equation (28a) into (30), performing the integration
and making use of equation (20), one obtains

[ = PKloL = p)gcos §6, W' " 2nr)"
Hr

€2Y)

Equation (31) could have been obtained directly from
the mass consideration in the liquid phase, i.e. I' =
prugd W "(2rr)y® where u, is given by equation (2).

NUMERICAL RESULTS AND DISCUSSION

Equation (25)is plotted as a solid line in Fig. 2 where
it is shown that the dimensionless thickness of the

(30) ' liquid film increases as Sc is increased. With the aid of
10
fi 1—/

08
o6t T 0920
< \ \\ M7 199
55 L

04 = 285,

37 a1z
02t /o
0
o] : 1.2 16 20 24
J/(2n+]) 77].
Fi1G. 3. Dimensionless temperature and velocity profiles in the condensate.
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Fig. 2, the dimensionless temperature profiles of the
condensate given by equation (24a) can now be plotted
as a function of Sc, as shown in Fig. 3. The dimension-
less velocity in the direction along the impermeable
surface is plotted as a horizontal line in the same plot.
From Figs. 2 and 3 it can be deduced that the
boundary layer thickness of a cone is smaller by a
factor of 1/,/3 than that of a wedge.

The surface heat flux along the impermeable surface
is

T,
4w = —km, <—>
t ay y=0

= km,L(Tw - Ts)\/(Rax,L) [—BIL(O)]

X

(32)

where k,, ; is the thermal conductivity of the porous
medium saturated with liquid. Substituting equation
(24b) into (32) yields

_ (2" + l)km,L(Tw _ Ts)\Z(Rax, L) 12 (33)
W=1UT7 xerf[@n+ D Png2] |

The local Nusselt number is defined as

Nu. = hx q.,X
“T s kT =T

Substituting equation (33) into (34a), one obtains

(34a)

Nu, _ 1
JI@n+1Ra, ]  Jrerf[@n + 1)1Pn.,/2

.(34b
]( )

Equation (34b) is an exact solution for Nusselt
number in terms of the dimensionless boundary layer
thickness, which is implicitly a function of Sc through
equation (25). It will be convenient to obtain an
expression for Nusselt number in terms of the wall
subcooling explicitly. To this end, we now consider
equations (24), (34b) and (23) for the limiting cases of
Ns = 0 and nyy — oo:

(1) Asn.; — 0, equations (24) can be expanded for
small n,; to give

g =1-11 (35)
Nis
1
b= —— (33)
Nis
and consequently
28c
= 37
NiLs 2n+1) (37

which is obtained by substituting equation (36) into
(23). Equation (37) shows that Sc — 0 as n,; - O.
Substituting (37) into (35) gives

nL/@n+ 1)

O =1- \/(ZSc)

(38)
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which shows that the temperature of the condensate is
a linear function of distance. Similarly, equation (34)
can be expanded for small 5, to give

Nu,,\/(2Sc) _
JI2n + DRa, ]

where we have made use of equation (37).
With the aid of equations (20) and (37), the film
thickness for this limiting case is given by

oL _ 2S¢ L/2
x |[@n+DRay,| °

It should be noted that equations (38)—(40) are similar
to the ‘Nusselt-type of analysis in the classical film
condensation problems [5], and can therefore be
obtained from a simple control volume analysis by
writing mass and energy balance with the aid of the
Darcy’s law and the assumption of a linear tempera-
ture profile inside the liquid film.* Equations (37) and
(39) are plotted as dashed lines in Figs. 2 and 4. As in
the classical film condensation problems, it is shown in
these figures that the ‘Nusselt-type approximation
overestimates the boundary layer thickness while
underestimates the Nusselt number.

(2) As n. s — o0, equation (24) and (34) can be
expanded for large #,; to give

1 (39)

(40)

0L =1 —erf[(2n + 1)*?y,/2] (41)
Nu, _
s R = 0642 @2)

and

Sc = \/73 [\/‘(_znzj-—g ’Iu] exp [(Zn: 1)'1{5:'- 43)

Equation (42) is plotted as horizontal dashed lines on
the right-hand margin of Fig. 4. Equation (43) implies
that Sc — o as 5 - . Note that for this limiting
case the boundary layer approximations are accurate
only if Ra, ; — oo so that §/x < 1.

Equations (39) and (42) suggest that it is convenient
to plot

Nu, /2S¢
\/[(Zn + l)Rax,L]

which can be obtained by first assuming a value of 7,5
and computing Sc and Nu, from equations (25) and
(34b), respectively. The results of the computations are
plotted as a solid line in Fig. 5. The straight (dashed)
lines in Fig. 5 are the asymptotic limits of small and

vs /28c,

* After this work had been completed, the author received
an unpublished paper [8] from Dr H. Hardee who had also
considered the problem of film condensation along a vertical
cold plate in a porous medium and obtained an approximate
solution similar to equations (39) and (40) (with n = 0 and ¢
= () independently by an integral method.
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28

———— “Nusselt” Type Approximation

Exact Solution

Fi1G. 4. Heat transfer results for film condensation.

large wall subcoolings given by equations (39) and
(42). An approximate expression for Nusselt number
valid for the whole range of wall subcooling can now
be constructed by the method described by Churchill
and Usag [9]. To this end we write the Nusselt number
in the following form

Jl@n TSRa,,L] - [(lescy + %)]/ (44)

which would reduce to the asymptotic expressions

given by equations (39) and (42) for small and large
wall subcoolings, respectively. The value of m in
equation (44) is then determined by comparing the
right-hand side of equation (44) to the right-hand side
of equation (34b) at different values of Sc. It was found
that if the value of m = 2 is chosen in equation (44), the
right-hand side of equation (44) is closest to the exact
solution given by the right-hand side of equation (34b).
Equation (44) with m = 2 gives

4?2
34F
~ley
g
=4 -7
c -
o~
S b g
=, 7
> 18 e
z P - — — S¢—~®
- —_—— S —
L _ Sc—=0
-
~
“Nusselt” Type Approximation (S¢ —0)
ol
0 08 16 24 32 40 48

/2S¢

FiG. 5. The quantity {Nu,/\/[(2n + 1)Ra, ]} /2S¢ vs \/2Sc.
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NuJ/2Sc 2Sc:|1/2
JI@n+ DRa, ] n

which is an approximate expression for Nusselt num-
ber that is accurate to the fourth significant figures (as
compared to the exact solution) for the whole range
of Sc.

CONCLUDING REMARKS

The problems of film condensation along a wedge
and a cone in a porous medium have been investigated
based on the standard approximations used in the
classical film condensation literature. Although the
assumption of no mixed zone existing between the film
and the saturation vapor is an accurate one for the
classical film condensation problems, the validity of
this assumption for film condensation in a porous
medium must await experimental confirmation. As
noted earlier, the governing equations and boundary
conditions (under the assumptions stated) for the
present problem are identical to those of film boiling in
a porous medium filled with a saturated liquid,
provided that the roles of the vapor and the liquid are
being interchanged. Thus, Figs. 2-5 will also apply to
the problems of film boiling about a wedge and a cone
in a porous medium if the subscript L is replaced by v,
and Sc is replaced by Sh (a dimensionless parameter

related to the degree of wall superheating).
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CONDENSATION EN FILM LE LONG D’'UNE SURFACE INCLINEE
DANS UN MILIEU POREUX

Résumé—On étudie le probléme de la condensation en film le long d’un diédre ou d’un cone dans un milieu
poreux empli de vapeur saturée séche. Comme dans les problémes classiques de condensation en film, on
suppose que (i) le condensat et la vapeur sont séparés ‘ar une frontiére sans zone diphasique, et (ii) le
condensat a des propriétés constantes. Dans les approximations de la couche limite, on obtient des solutions
de similitude pour la température et la vitesse dans le condensat. Une solution analytique est obtenue pour le
nombre de Nusselt qui dépend de la racine carrée du nombre de Rayleigh et de I’épaisseur adimensionnelle du
film. Cette derniére est une fonction du parameétre adimensionnel lié au sous-refroidissement de la paroi. Des
cas asymptotiques pour des petits et des grands sous-refroidissements de la paroi sont aussi considérés.
Comme dans les problémes classiques de condensation en film, on trouve que I'approximation de type
“Nusselt” (pour un faible sous-refroidissament de la paroi) surestime I’épaisseur du film et sous-estime le
nombre de Nusselt. On obtient une expression approchée du nombre de Nusselt en fonction du degré de
sous-refroidissement de la paroi.

FILMKONDENSATION AN EINER GENEIGTEN OBERFLACHE IN EINEM POROSEN
MEDIUM

Zusammenfassung—In diesem Aufsatz werden die Probleme der stetigen Filmkondensation an Keilen und
Kegeln in einem porésen Medium untersucht, das mit trocken gesittigtem Dampf gefiilit ist. Wie bei den
klassischen Filmkondensationsproblemen wird angenommen, daB erstens Kondensat und Dampf durch
eine definierte Grenzfliche voneinander getrennt sind, ohne daB sich dazwischen eine Zweiphasenzone
befindet und daB zweitens das Kondensat konstante Stoffwerte besitzt. Mit Hilfe der Grenzschicht-
Niherungen erhdlt man Ahnlichkeits-Losungen fiir das Temperatur- und Geschwindigkeitsfeld im
Kondensat. Dariiber hinaus gelang es, eine geschlossene Losung fiir die Nusselt-Zahl zu entwickeln; diese
hingt vom Quadrat der Rayleigh-Zahl und von der dimensionslosen Filmdicke ab. Letztere ist eine
Funktion eines dimensionslosen Parameters, der seinerseits mit dem Grad der Wandunterkiihlung
verkniipft ist. Es werden auch Grenzfille fiir kleine und groBe Wandunterkiihlungen betrachtet. Wie bei den
klassischen Problemen der Filmkondensation ergibt sich, daBl die ‘Nusselt-Approximation® (fiir kleine
Wandunterkiihlungen) die Filmdicke zu groB und die Nusselt-Zahl zu kiein liefert. Man erhilt explizit
einen Niherungsausdruck fiir die Nusselt-Zahl in Abhingigkeit vom Grad der Wandunterkiihlung.
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TJIEHOYHAS KOHIAEHCALIUSI HA HAKJIOHHOY MOBEPXHOCTU B MOPUCTOM
CPEJE

Annorammus — HMccnenyercs crauMoHapHas IUJIGHOYHAs KOHICHCALMS HAa IOBEPXHOCTH KJIMHA WIH
KOHYCa, NOMEMIEHHOTO B NMOPHCTYIO CPely, 3aMOJHEHHYIO CYXHM HACBIUIEHHBIM NapoM. AHAaJIOTHYHO
KJ2CCHYECKHM 3aj1a4aM IO [JIEHOYHOH KOHJEHCALMM npexanonaraercsd, 4to (1) Mexay KOHAEHCAaTOM
H mapoM HMMEETCs YeTKas TPaHHULA H OTCYTCTBYET ABYX(a3Has 30Ha M 4TO (2) KOHIEHCAT XapakTepH-
3yeTcs NOCTOSAHHBIMH CBOHCTBAMH. B NpHONMKEHMH NOTPAHHYHOTO CJIOS TMOJIYYeHbl PELICHUs JUIS
TEMNEPaTYPHBIX ¥ JHHAMHYECKHX MoJieil B koHaeHcaTe. KpoMe TOro nonyqeHo BbipaxeHHE MJIA YHCa
HyccenbTa, nponopus#oHanbHOTO KOPHIO KBaapaTHOMY M3 uMcia Penes W Oe3pa3MepHO#l TosluuHe
nieskd. HaiigeHo, 4To nocieauss 3aBUCHT oT 6e3pa3MepHOro mapamerpa, CBA3aHHOIO CO CTENEHbIO
Henorpesa Ha crteHke. PaccMOTpeHbl Takke acCHMNTOTHYECKHE Cy4ad OOMBIINX ¥ MalbIX HENOTPEBOB
Ha CTeHKe. AHAJIOTMYHO KJIACCHYECKHM 3a/la4yaM IO NIIEHOYHOH KOHAEHCALIMM HAHCHO, YTO 3aBHCHMOCTD
Tuna «npubnmxkenns Hyccenbra» (an1s HEOONBLIMX HEAOTPEBOB HA CTEHKE) NACT 3aBBILICHHLIC 3HAYCHHA
TOJIIUMHBI MICHKHY U 3aHWXKEHHbIE 3HaveHus yucna Hyccenbra. [Ins nociaensero nojyyeHa npHOJIMKeH-
Has 3aBHCHMOCTB, BbIPaXKEHHasl HEPe3 CTeNeHb HENOrpeBa Ha CTEHKE.



